On transformation formulae of ordinary hypergeometric series
نویسندگان
چکیده
منابع مشابه
Summation Formulae for Noncommutative Hypergeometric Series
Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have recently been studied by a number of researchers including (in alphabetical order) Durán, Duval, Grünbaum, Iliev, Ovsienko, Pacharoni, Tirao, and others. See [3, 6, 8, 9, 10, 11, 12, 16] for some selected papers. The subject of hypergeometric series involving matrices is closel...
متن کامل0 M ar 1 99 8 Transformation formulae for multivariable basic hypergeometric series
We study multivariable (bilateral) basic hypergeometric series associated with (type A) Macdonald polynomials. We derive several transformation and summation properties for such series including analogues of Heine's 2 φ 1 transformation, the q-Pfaff-Kummer and Euler transformations, the q-Saalschütz summation formula and Sear's transformation for terminating, balanced 4 φ 3 series. For bilatera...
متن کاملTransformation formulas for multivariable basic hypergeometric series
Abstract. We study multivariable (bilateral) basic hypergeometric series associated with (type A) Macdonald polynomials. We derive several transformation and summation properties for such series, including analogues of Heine’s 2φ1 transformation, the q-Pfaff-Kummer and Euler transformations, the q-Saalschütz summation formula, and Sear’s transformation for terminating, balanced 4φ3 series. For ...
متن کاملRecursion Formulae for Hypergeometric Functions
indicates the term corresponding to j = h is to be deleted. If one of the a, = 0 or a negative integer, then (1) always converges, since it terminates. Otherwise it converges for all finite x if P ^ Q and for |a;| < 1 if P = Q + 1. In this case, however, the function can be analytically continued into the cut plane |arg (1 — a;)| < x, and we shall often denote by q+iFq(x) not only the series (1...
متن کاملHypergeometric Functions that Generate Series Acceleration Formulae for Values of the Riemann Zeta Function
was first obtained by A. Markov in 1890, but became more widely known after its appearance in connection with Apéry’s proof of the irrationality of ζ(3). We outline here the role that hypergeometric functions play in generating more general series acceleration formulae for values of the Riemann zeta function at the positive integers. At odd positive integers, we have the formulae of Koecher, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Global Journal of Mathematical Analysis
سال: 2014
ISSN: 2307-9002
DOI: 10.14419/gjma.v2i3.2855